KinFragLib: Exploring the Kinase Inhibitor Space Using Subpocket-Focused Fragmentation and Recombination

24 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Protein kinases play a crucial role in many cell signaling processes, making them one of the most important families of drug targets. In this context, fragment-based drug design strategies have been successfully applied to develop novel kinase inhibitors, usually following a knowledge-driven approach to optimize a focused set of fragments to a potent kinase inhibitor.
Alternatively, KinFragLib is a new method that allows to explore and extend the chemical space of kinase inhibitors using data-driven fragmentation and recombination, built on available structural kinome data from the KLIFS database for over 2,500 kinase DFG-in complexes. The computational fragmentation method splits the co-crystallized non-covalent kinase inhibitors into fragments with respect to their 3D proximity to six predefined functionally relevant subpocket centers. The resulting fragment library consists of six subpocket pools with over 7,000 fragments, available at
KinFragLib offers two main applications: (i) In-depth analyses of the chemical space of known kinase inhibitors, subpocket characteristics and connections, as well as (ii) subpocket-informed recombination of fragments to generate potential novel inhibitors. The latter showed that recombining only a subset of 624 representative fragments generated a combinatorial library of 6.7 million molecules, containing, besides some known kinase inhibitors, more than 99% novel chemical matter compared to ChEMBL and 63% molecules compliant with Lipinski's rule of five.


Fragment-based drug design (FBDD)
Kinase inhibitors
Computational drug design

Supplementary materials

kinfraglib si

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.