A Ligand-Directed Nitrophenol Carbonate for Transient In Situ Bioconjugation and Drug Delivery

17 July 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Here we report the first use of ligand-directed proximity accelerated bioconjugation chemistry in the tandem delivery and release of a therapeutic payload. To do this we designed a nitrophenol carbonate for ligand-directed in situ bioconjugation of a prodrug payload to a protein. The transient nature of our conjugation chemistry renders the protein a depot for time-dependent release of active drug following hydrolysis and self-immolation. In our model system, using an immunostimulant prodrug, biotin ligand, and avidin protein, we observe time-dependent release of bioavailable immunostimulant both spectroscopically and with an immune cell line over 48 h. Avidin co-crystalized with the biotin directing group verified the binding pose of the ligand and offered insight into the mechanism of in situ bioconjugation. Overall, this scaffold warrants further investigation for the time-dependent delivery of therapeutics and use in protein ligand pairs beyond biotin and avidin used for this work.


Affinity Labelling


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.