Applying the quasi-steady-state approximation to the autocatalytic zymogen activation: A novel general methodology for scaling analysis

06 July 2020, Version 4
This content is a preprint and has not undergone peer review at the time of posting.

Abstract


A zymogen is an inactive precursor of an enzyme that needs to go through a chemical change to become an active enzyme. The general intermolecular mechanism for the autocatalytic activation of zymogens is governed by the single-enzyme, single-substrate catalyzed reaction following the Michaelis-Menten mechanism of enzyme action, where the substrate is the zymogen and the product is the same enzyme that is catalyzing the reaction. In this article we investigate the nonlinear chemical dynamics of the intermolecular autocatalytic zymogen activation reaction mechanism. In so doing, we develop a general strategy for obtaining dimensionless parameters that, when sufficiently small, legitimize the application of the quasi-steady-state approximation. Our methodology combines energy methods and exploits the phase-plane geometry of the mathematical model, and we obtain sufficient conditions that support the validity of the standard, reverse and total quasi-steady-state approximations for the intermolecular autocatalytic zymogen activation reaction mechanism. The utility of the procedure we develop is that it circumnavigates the direct need for a priori timescale estimation, scaling, and non-dimensionalization. At the same time, a novel result emerges from our analysis: the discovery of a dynamic transcritical bifurcation that exists in the singular limit of the model equations. Moreover, associated with the dynamic transcritical bifurcation is an imperfect term. We prove that when the imperfect term vanishes and the singular vector field is perturbed, there exists a canard that follows a repulsive slow invariant manifold over timescales of O(1). This is the first report of such a solution for the intermolecular and autocatalytic zymogen activation reaction. By extension, our results illustrate that canards also exist in the classic single enzyme, single-substrate reversible Michaelis-Menten reaction mechanism.

Keywords

chemical kinetics models
chemical kinetics measurements
zymogen activation
non-linear dynamics
Steady-state kinetics
initial rate experiments
quasi-steady state approximation
quasi-steady state conditions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.