Computational Drug Repurposing Studies on the ACE2-Spike (RBD) Interface of SARS-CoV-2

16 July 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


The novel coronavirus is known to enter the cell by binding to the human transmembrane protein Angiotensin-Converting Enzyme 2 (ACE2). The S(Spike)-glycoprotein of the SARS-CoV-2 forms a complex with the ACE2. Thus, the S-glycoprotein is one of the hot targets, as it forms the first line of contact between the virus and the human cell. Drug repurposing would help in identifying drugs that are safe and have no or fewer side effects. Hence, in addition to the Food and Drug Administration (FDA) approved molecules the compounds from natural sources were also considered. The current study includes docking and simulations of the FDA approved molecules and phytochemicals from Indian medicinal plants, targeting the ACE2-Spike protein complex. Rutin DAB10 and swertiapuniside were obtained as the top-ranked drugs from these two databases, respectively. The molecular dynamics simulations of ligand-free, rutin DAB10-bound, and swertiapuniside-bound ACE2-Spike complex revealed crucial ACE2-Spike interface residues forming strong interactions with the two ligands molecules. This may infer, that they may affect the ACE2 and spike binding. The conformational flexibility in the drug-binding pocket was captured using the RMSD-based clustering of the ligand-free simulations. An ensemble docking was performed wherein the two databases were docked on each of the representatives of ACE2-Spike obtained through clustering. The potential phytochemicals identified belonged to Withania somnifera, Swertia chirayita, Tinospora cordifolia, Andrographis paniculata, Piper longum, and Azadirachta indica. The FDA molecules identified were rutin DAB10, fulvestrant, cefoperazone acid, escin, chlorhexidine diacetate, echinacoside, capreomycin sulfate, and elbasvir.


molecular dyanmics

Supplementary materials

Supplementary Data 11July


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.