Conformational Landscape Reduction of a Dynamic 29-Residue Peptide by a Perfluoroaromatic Small Molecule

22 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Conformationally dynamic peptides and proteins display both important biochemical properties and present a challenge for computational modeling. Characterizing the accessible structural landscape represents one route to understand their function with molecular level detail. We characterize a self-labeling 29-residue peptide, MP01-Gen4, that undergoes structural alterations in the presence of a perfluoroaromatic reaction partner. Replica exchange molecular dynamics (REMD) shows MP01 to access a broad set of states, that microsecond-long explicit solvent simulations only minimally sample. REMD and structural network analysis find an altered and reduced conformational landscape when MP01 interacts non-covalently or is covalently attached to the perfluoroaromatic small molecule. Residues throughout the peptide, notably at the C-terminus, interact with the small molecule in conformational state-dependent manners. The results help explain and generate hypotheses for experimental observations including the importance of flexibility and the role of the N- and C-terminal regions, both of which are distant from the active cysteine. The simulations highlight the importance of substantial sampling in minimally stabilized, conformationally dynamic systems and supplies a case study for small molecule-mediated, peptide conformational changes.

Keywords

Conformational Landscape
peptide dynamics
Conformational Alteration
Small Molecule Interactions

Supplementary materials

Title
Description
Actions
Title
SI MP01 MD paper
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.