Structure of the Silica/Divalent Electrolyte Interface: Molecular Insight into Charge Inversion with Increasing pH

21 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The molecular origin of overcharging at mineral oxide surfaces remains a cause of contention within the geochemistry, physics, and colloidal chemistry communities owing to competing “chemical” vs “physical” interpretations. Here, we combine vibrational sum frequency spectroscopy and streaming potential measurements to obtain molecular and macroscopic insights into the pH-dependent interactions of calcium ions with a fused silica surface. In 100 mM CaCl2 electrolyte, we observe evidence of charge neutralization at pH~10.5, as deducted from a minimum in the interfacial water signal. Concurrently, adsorption of calcium hydroxide cations is inferred from the appearance of a spectral feature at ~3610 cm-1. However, the interfacial water signal increases at higher pH, while adsorbed calcium hydroxide appears to remain constant, indicating that overcharging results from hydrated Ca2+ ions present within the Stern layer. These findings suggest that both specific adsorption of hydrolyzed ions and ion-ion correlations of hydrated ions govern silica overcharging with increasing pH.

Keywords

Silica
Divalent
Electrolyte
Calcium
Interface
Sum Frequency Generation
Zeta Potential
pH
Aqueous
Overcharging
Calcium Hydroxide
Water

Supplementary materials

Title
Description
Actions
Title
Rashwan SupportingInformation
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.