Rate Coefficients and Kinetic Isotope Effects of the Cl + XCl  XCl + Cl (X=H, D, Mu) Reactions from Ring Polymer Molecular Dynamics

13 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The ring-polymer molecular dynamics (RPMD) was used to calculate the thermal rate coefficients and kinetic isotope effects of the heavy-light-heavy abstract reaction Cl + XCl ® XCl + Cl (X=H, D, Mu). For the Cl + HCl reaction, the excellent agreement between the RPMD and experimental values provides a strong proof for the accuracy of the RPMD theory. And the RPMD results also consistent with results from other theoretical methods including improved-canonical-variational-theory and quantum dynamics. The most novel finding is there is a double peak in Cl + MuCl reaction near the transition state, leaving a free energy well. It comes from the mode softening of the reaction system at the peak of the potential energy surface. Such an explicit free energy well suggests strongly there is an observable resonance. And for the Cl + DCl reaction, the RPMD rate coefficient again gives very accurate results comparing with experimental values. The only exception is at the temperature of 312.5 K, at this temperature, results from RPMD and all other theoretical methods are close to each other but slightly lower than the experimental value, which indicates experimental or potential energy surface deficiency.


Keywords

Ring-polymer MD
quantum effects causes
Recrossing effects
Reaction rate coefficient
Kinetic isotope effect

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.