Tin Oxynitride-based Ferroelectric Semiconductors for Solar Energy Conversion Applications

20 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Lead-halide perovskites have emerged as a promising class of semiconductors; however they suffer from issues related to lead-toxicity and instability. We report results of a firstprinciples-based design of heavy-metal-based oxynitrides as alternatives to lead-halide perovskites. We have used density-functional-theory calculations to search a vast composition space of ABO2N and ABON2 compounds, where B is a p-block cation, and A is an alkaline, alkaliearth, rare-earth or transition metal cation, and identify 10 new ABO2N oxynitride semiconductors that we expect to be formable. Specifically, we discover a new family of ferroelectric semiconductors with A3+SnO2N stoichiometry (A = Y, Eu, La, In, and Sc) in the LuMnO3-type structure, which combine the strong bonding of metal oxides with the low carrier effective mass and small, tunable band gaps of the lead-halide perovskites. These tin oxynitrides have predicted direct band gaps ranging from 1.6 – 3.3 eV, and a sizeable electric polarization up to 17 μC/cm2 , which is predicted to be switchable by an external electric field through a non-polar phase. With their unique combination of polarization, low carrier effective mass and band gaps spanning the entire visible spectrum, we expect ASnO2N ferroelectric semiconductors will find useful applications as photovoltaics, photocatalysts, and for optoelectronics.

Keywords

ferroelectric semiconductor
photovoltaic
perovskite
DFT
materials design

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.