Adaptive Evolution of Peptide Inhibitors for Mutating SARS-CoV-2

10 July 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


The SARS-CoV-2 virus is currently causing a worldwide pandemic with dramatic societal consequences for the humankind. In the last decades, disease outbreaks due to such zoonotic pathogens have appeared with an accelerated rate, which calls for an urgent development of
adaptive (smart) therapeutics. Here, we develop a computational strategy to adaptively evolve peptides that could selectively inhibit mutating S protein receptor binding domains (RBDs) of different SARS-CoV-2 viral strains from binding to their human host receptor, angiotensin-converting enzyme 2 (ACE2). Starting from suitable peptide templates, based on selected ACE2 segments (natural RBD binder), we gradually modify the templates by random mutations, while retaining those mutations that maximize their RBD-binding free energies. In this adaptive evolution, atomistic molecular dynamics simulations of the template-RBD complexes are iteratively perturbed by the peptide mutations, which are retained under favorable Monte Carlo decisions. The computational search will provide libraries
of optimized therapeutics capable of reducing the SARS-CoV-2 infection on a global scale.


adaptive evolution
therapeutic peptides
molecular dynamics
SARS-CoV-2 Spike protein

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.