Palladium-Catalyzed [3+2] Cycloaddition via Two-Fold 1,3-C(sp3)−H Activation

16 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cycloaddition reactions provide an expeditious route to construct ring systems in a highly convergent and stereoselective manner. For a typical cycloaddition reaction to occur, however, the installation of multiple reactive functional groups (π-bonds, leaving group, etc.) are required within the substrates, compromising the overall efficiency or scope of the cycloaddition reaction. Here, we report a palladium-catalyzed [3+2] reaction that utilizes C(sp3)–H activation to generate the three-carbon unit for formal cycloaddition with maleimides. We implemented a strategy where the initial C(sp3)–H activation/olefin insertion would trigger a relayed, second remote C(sp3)–H activation to complete a formal [3+2] cycloaddition. The diastereoselectivity profile of this reaction resembles that of a typical pericyclic cycloaddition reaction in that the relationships between multiple stereocenters are exquisitely controlled in a single reaction. The key to success was the use of weakly coordinating amides as the directing group, as undesired Heck or alkylation pathways were preferred with other types of directing groups. The use of the pyridine-3-sulfonic acid ligands is critical to enable C(sp3)–H activation directed by this weak coordination. The method is compatible with a wide range of amide substrates, including lactams, which lead to novel spiro-bicyclic products. The [3+2] product is also shown to undergo a reductive desymmetrization process to access chiral cyclopentane bearing multiple stereocenters with excellent enantioselectivity.

Keywords

Palladium
C-H activation
cycloaddition

Supplementary materials

Title
Description
Actions
Title
[3+2]CHCycloadditionSI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.