Microstructure and Pressure Driven Electrodeposition Stability in Solid-State Batteries

16 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Interfacial deposition stability at the lithium metal-solid electrolyte interface in all solid-state batteries (ASSB) is governed by the stress-transport-electrochemistry coupling in conjunction with the polycrystalline/amorphous solid electrolyte architecture. In this work, we delineate the optimal solid electrolyte microstructure comprising of grains, grain boundary and voids possessing desirable ionic conductivity and elastic modulus for superior transport and strength. An analytical formalism is provided to discern the impact of external “stack” pressure induced mechanical stress on electrodeposition stability; stress magnitude obtained are in the megapascal range considerably diminishing the stress-kinetics effects. For experimental stack pressures ranging up to 10 MPa, the impact of stress on reaction kinetics is negligibly small and electrolyte transport overpotentials dictate electrodeposition stability. We detail the deposition stability phase map as a function of solid electrolyte to Li metal shear modulus and molar volume ratios under varying operating conditions including external pressure, surface roughness, applied current density and ambient temperature. High current density operation with stable deposition can be ensured with ample external pressure, high temperature and low surface roughness operation for low shear modulus ratio of the solid electrolyte to Li metal.


solid-state battery
solid electrolyte
stack pressure
lithium electrodeposition
amorphous LPS
crystalline LPS

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.