Finding the Next Superhard Material through Ensemble Learning

15 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report an ensemble machine-learning method capable of finding new superhard materials by directly predicting the load-dependent Vickers hardness based only on the chemical composition. A total of 1062 experimentally measured load-dependent Vickers hardness data were extracted from the literature and used to train a supervised machine-learning algorithm utilizing boosting, achieving excellent accuracy (R2 = 0.97). This new model was then tested by synthesizing and measuring the load-dependent hardness of several unreported disilicides as well as analyzing the predicted hardness of several classic superhard materials. The trained ensemble method was then employed to screen for superhard materials by examining more than 66,000 compounds in crystal structure databases, which showed that only 68 known materials surpass the superhard threshold. The hardness model was then combined with our data-driven phase diagram generation tool to expand the limited num1 ber of reported compounds. Eleven ternary borocarbide phase spaces were studied, and more than ten thermodynamically favorable compositions with superhard potential were identified, proving this ensemble model’s ability to find previously unknown superhard materials

Keywords

superhard materials research
machine learning
indentation force curve

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.