In Silico Screening of Potent Bioactive Compounds from Honey Bee Products Against COVID-19 Target Enzymes

15 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


From the early days of the COVID-19 pandemic, side by side to immense investigates to design specific drugs or to develop a potential vaccine for the novel coronavirus. Myriads of FDA approved drugs are massively repurposed for COVID-19 treatment based on molecular docking of selected protein targets that play vital for the replication cycle of the virus. Honey bee products are well known of their nutritional values and medicinal effects. Antimicrobial activity of bee products and natural honey have been documented in several clinical studies and was considered a good alternative for antiviral medications to treat some viral infections. Bee products contain bioactive compounds in the form of a collection of phenolic acids, flavonoids and terpenes of natural origin. We revealed by molecular docking the profound binding affinity of 14 selected phenolics and terpenes present in honey and propolis (bees glue) against the main protease (Mpro) and RNA dependent RNA polymerase (RdRp) enzymes of the novel 2019-nCoV coronavirus. Of these compounds, p-coumaric acid, ellagic acid, kaemferol and quercetin has the strongest interaction with the 2019-nCoV target enzymes, and they may be considered as an effective 2019-nCoV inhibitors.


Bee Products
phenolic compounds
Molecular docking analysis
drug repurposing applications


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.