Fc-Binding Antibody-Recruiting Molecules Targeting Prostate-Specific Membrane Antigen: Defucosylation of Antibody for Efficacy Improvement

15 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Synthetic small molecules that redirect endogenous antibodies to target cells are promising drug candidates because they overcome the potential shortcomings of therapeutic antibodies, such as immunogenicity. Previously, we reported a novel class of bispecific molecules targeting the antibody Fc region and folate receptor, named Fc-binding antibody-recruiting molecules (Fc-ARMs). Fc-ARMs can theoretically recruit most endogenous antibodies, inducing cancer cell elimination via antibody-dependent cell-mediated cytotoxicity (ADCC). Here, we describe new Fc-ARMs that target prostate cancer (Fc-ARM-Ps). Fc-ARM-Ps recruited antibodies to cancer cells expressing prostate membrane-specific antigen but did so with lower efficiency compared with Fc-ARMs targeting folate receptor. Upon recruitment by Fc-ARM-P, defucosylated antibodies efficiently activated natural killer cells and induced ADCC, whereas antibodies with intact N-glycans did not. The results suggest that the affinity between recruited antibodies and CD16a, a type of Fc receptor expressed on immune cells, could be a key factor controlling immune activation in the Fc-ARM strategy.

Keywords

antibody
cancer
cancer immunotherapy
immunoengineering
drug delivery system
peptide
antibody-recruiting molecules
bispecific molecules
ADCC
prostate-specific membrane antigen

Supplementary materials

Title
Description
Actions
Title
KS&MH, SI vf
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.