Robust Supramolecular Nano-Tunnels Built from Molecular Bricks

14 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chemists are always seeking new methods to construct porous lattice frameworks using simple motifs as the impetus. Different from the extensively reported frameworks which were stabilized by extended bonding, porous crystals of discrete organic molecules is an emerging area of porous materials with dynamic and flexible conformation, consisting exclusively of non-covalent interactions. Herein we report geometrically simple linear molecule that assemble into a supramolecular nano-tunnel through synergy of anionic trident and multiple intermolecular pi-pi stacking interactions. The nano-tunnel crystal exhibit exceptional chemical stability in concentrated HCl and NaOH aqueous solutions, which is rarely been seen in supramolecular organic frameworks and often related to designed extensive hydrogen bonding interactions. Upon thermal treatment, the formed nano-tunnel crystals go through multistage single-crystal-to-single-crystal phase transformations accompanied by thermosalient effect. Aggregation-induced emission joins with the adaptive pores render the crystals with responsive fluorescent change from blue to yellow and visible self-healing porosity transformation upon being stimulated. Furthermore, the desolvated pores exhibit highly selective CO2 adsorption at ambient temperature.

Keywords

supramolecular assembly
Porous Molecular Crystal
nano-tunnel
aggregation-induced emission
thermosalient
CO2 adsorption

Supplementary materials

Title
Description
Actions
Title
Nano-tunnel-SI
Description
Actions
Title
Movie
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.