Reagent Free Electrochemical-Based Detection of Silver Ions at Interdigitated Micro Electrodes Using in Situ pH Control

10 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Silver ions, the most toxic form of silver, can be present in drinking water due to their release from silver nanoparticles which are widely used in consumer products. Due to their adverse health effects, a quick portable approach for detection in drinking water is needed. Herein we report on the development of an electrochemical sensor for silver ions detection in tap water using linear sweep voltammetry with in situ pH control; enabled by closely space interdigitated electrode arrays. The in situ pH control approach, allows the pH of a test solution to be tailored to pH 3 thereby eliminating the current need for acid addition. A calibration curve between 0.2 - 10 µM was established for silver detection in sodium acetate when 1.25 V and 1.65 V was applied at the protonator electrode during deposition and stripping, respectively, as a proof of concept study. For the final application in tap water, 1.65 V was applied at the protonator electrode during deposition and stripping. The chlorine ions, present in tap water as a consequence of the disinfection process, facilitated the silver detection and no additional electrolyte had to be added. Combination of complexation of silver ions with chlorine coupled with in situ pH control resulted in linear calibration range between 0.25 and 2 µM in tap water without the need for acidification.

Keywords

Electroanalysis
silver ion detection
tap water
square wave voltcoulommetry
In situ pH control

Supplementary materials

Title
Description
Actions
Title
Supporting information Final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.