Electronic Structure Calculations in Electrolyte Solutions: Methods for Neutralization of Extended Charged Interfaces

09 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Density functional theory (DFT) is often used for simulating extended materials such as infinite crystals or surfaces, under periodic boundary conditions (PBCs). In such calculations, when the simulation cell has non-zero charge, electrical neutrality has to be imposed and this is often done via a uniform background charge of opposite sign (`jellium'). This artificial neutralization does not occur in reality, where a different mechanism is followed as in the example of a charged electrode in electrolyte solution, where surrounding electrolyte screens the local charge at the interface. The neutralizing effect of surrounding electrolyte can be incorporated within a hybrid quantum-continuum model based on a modified Poisson-Boltzmann equation, where the concentrations of electrolyte ions are modified to achieve electroneutrality. Among the infinite possible ways of modifying the electrolyte charge, we propose here a physically optimal solution which minimizes the deviation of concentrations of electrolyte ions from those in open boundary conditions (OBCs). This principle of correspondence of PBCs with OBCs leads to the correct concentration profiles of electrolyte ions and electroneutrality within the simulation cell and in the bulk electrolyte is maintained simultaneously, as observed in experiments. This approach, which we call the Neutralization by Electrolyte Concentration Shift (NECS), is implemented in our electrolyte model in the ONETEP linear-scaling DFT code which makes use of a bespoke highly parallel Poisson-Boltzmann solver, DL_MG. We further propose another neutralization scheme (`accessible jellium') which is a simplification of NECS. We demonstrate and compare the different neutralization schemes on several examples.

Keywords

Poisson Boltzmann
DFT
Charged Interfaces
Electroneutrality

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.