Geometric Analysis and Formability of the Cubic A2BX6 Vacancy Ordered Double Perovskite Structure

03 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A geometric analysis of the cubic A2BX6 structure commonly formed by metal halides is presented. Using the ‘hard sphere’ approximation, where the ions are represented by spheres of a fixed radius, we derive four limiting models that each constrain the distances between constituent ions in different ways. We compare the lattice parameters predicted by these four models with experimental data from the Inorganic Crystal Structure Database (ICSD). For the fluorides, the maintenance of the AX bond length at the sum of the A and X radii gives the best approximation of the lattice parameter, leading to structures with widely separated BX6 octahedra. For the heavier halides, a balance between forming an A site cavity of the correct size, and maintaining suitable anion-anion distances determines the lattice parameter. It is found that in many A2BX6 compounds of heavier halides, the neighbouring octahedra show very significant anion-anion overlap, meaning that the commonly used description of these materials of having isolated BX6 octahedra is misleading. We use the geometric models to derive formability criteria for vacancy ordered double perovskites.

Keywords

K2PtCl6
vacancy ordered perovskite

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.