CHARMM-DYES: Parameterization of Fluorescent Dyes for Use with the CHARMM Forcefield

03 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present CHARMM-compatible forcefield parameters for a series of fluorescent dyes from the Alexa, Atto and Cy families, commonly used in F¨orster resonance energy transfer (FRET) experiments. These dyes are routinely used in experiments to resolve the dynamics of proteins and nucleic acids at the nanoscale. However, little is known about the accuracy of the theoretical approximations used in determining the dynamics from the spectroscopic data. Molecular dynamics simulations can provide valuable insights into these dynamics at an atomistic level, but this requires accurate parameters for the dyes. The complex structure of the dyes, and the importance of this in determining their spectroscopic properties, means that parameters generated by analogy to existing parameters do not give meaningful results. Through validation relative to quantum chemical calculation and experiment, the new parameters are shown to significantly outperform those that can be generated automatically, giving better agreement in both the charge distributions and structural properties. These improvements, in particular with regards to orientation of the dipole moments on the dyes, are vital for accurate simulation of FRET processes.

Keywords

FRET
molecular dynamics
force field

Supplementary materials

Title
Description
Actions
Title
si
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.