Fast and Automatic Estimation of Transition State Structures Using Tight Binding Quantum Chemical Calculations

03 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present a method for the automatic determination of transition states (TSs) that is based on Grimme’s RMSD-PP semiempirical tight binding reaction path method (J. Chem. Theory Comput. 2019, 15, 2847-2862), where the maximum energy structure along the path serves as an initial guess for DFT TS searches. The method is tested on 100 elementary reactions and located a total of 89 TSs correctly. Of the 11 remaining reactions, nine are shown not to be elementary reaction after all and for one of the two true failures the problem is shown to be the semiempirical tight binding model itself. Furthermore, we show that the RMSD-PP barrier is a good approximation for the corresponding DFT barrier for reactions with DFT barrier heights up to about 30 kcal/mol. Thus, RMSD-PP barrier heights, which can be estimated at the cost of a single energy minimisation, can be used to quickly identify reactions with low barriers, although it will also produce some false positives.

Keywords

xTB methods

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.