Exploiting Generative Design for Multi-Material Inkjet 3D Printed Cell Instructive, Bacterial Biofilm Resistant Composites

02 July 2020, Version 1


As our understanding of disease grows, it is becoming established that treatment needs to be personalized and targeted to the needs of the individual. In this paper we show that multi-material inkjet-based 3D printing, when backed with generative design algorithms, can bring a step change in the personalization of medical devices. We take cell-instructive materials known for their resistance to bacterial biofilm formation and reformulate for multi-material inkjet-based 3D printing. Specimens with customizable mechanical moduli are obtained without loss of their cell-instructive properties. The manufacturing is coupled to a design algorithm that takes a user-specified deformation and computes the distribution of the materials needed to meet the target under given load constraints. Optimisation led to a voxel map file defining where different materials should be placed. Manufactured products were assessed against the mechanical and cell-instructive specifications and ultimately showed how multifunctional personalization emerges from generative design driven 3D printing.


3D Printing
Generative Design
Cell instructive
Bacterial biofilm resistance


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.