Epimerization-free C-term Activation of Peptide Fragments by Ball-Milling

02 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ball-milling enabled to perform [2+1], [2+2], and [2+3] peptide couplings with high yields and, if any, very low epimerization. Very good results were obtained with peptide fragments containing highly epimerization-prone and/or highly hindered amino acids at C-term such as phenylglycine, cysteine and valine. Ball-milling was clearly identified as the key element to obtain both high yield and purity along with low epimerization. Indeed, the ball-milling conditions proved to be superior to the classical solution synthesis approach on a various array of widely used coupling agents. These results open avenues for the development of highly efficient, convergent and flexible peptide synthesis strategies based on peptide fragment couplings mediated by ball-milling.

Keywords

Mechanochemistry Mechanical forces
Mechanochemistry vs Solution Methods
peptide synthesis
Ball-Milling Method
epimerization-free segment condensation reaction

Supplementary materials

Title
Description
Actions
Title
20200701 Experimental part fragment coupling
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.