Transport Mechanisms Underlying Ionic Conductivity in Nanoparticle-Based Single-Ion Electrolytes

26 June 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Recent studies have demonstrated the potential of nanoparticle-based single-ion conductors as battery electrolytes. In this work, we introduce a coarse-grained multiscale simulation approach to identify the mechanisms underlying the ion mobilities in such systems and to clarify the influence of key design parameters on conductivity. Our results suggest that for the experimentally studied electrolyte systems, the dominant pathway for cation transport is along the surface of nanoparticles, in the vicinity of nanoparticle-tethered anions. At low nanoparticle concentrations, connectivity of cationic surface transport pathways and conductivity increase with nanoparticle loading. However, cation mobilities are reduced when nanoparticles are in close vicinity, causing conductivity to decrease for suffciently high particle loadings. We discuss the impacts of cation and anion choice as well as solvent polarity within this picture and suggest means to enhance ionic conductivities in single-ion conducting electrolytes based on nanoparticle salts.


nanocomposite material
ion Transport Mechanisms
Single-Ion Conducting Electrolytes
Surface-mediated transport
Multiscale Simulation Approach
molecular dynamics
kinetic Monte Carlo simulations

Supplementary materials

Supporting Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.