Enhanced Ion Transport in an Ether Aided Super Concentrated Ionic Liquid Electrolyte for Long-Life Practical Lithium Metal Battery Applications

02 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


We explore a novel ether aided superconcentrated ionic liquid electrolyte; a combination of ionic liquid, N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (C3mpyrFSI) and ether solvent, 1,2 dimethoxy ethane (DME) with 3.2 mol/kg LiFSI salt, which offers an alternative ion-transport mechanism and improves the overall fluidity of the electrolyte. The molecular dynamics (MD) study reveals that the coordination environment of lithium in the ether aided ionic liquid system offers a coexistence of both the ether DME and FSI anion simultaneously and the absence of ‘free’, uncoordinated DME solvent. These structures lead to very fast kinetics and improved current density for lithium deposition-dissolution processes. Hence the electrolyte is used in a lithium metal battery against a high mass loading (~12 mg/cm2) LFP cathode which was cycled at a relatively high current rate of 1mA/cm2 for 350 cycles without capacity fading and offered an overall coulombic efficiency of >99.8 %. Additionally, the rate performance demonstrated that this electrolyte is capable of passing current density as high as 7mA/cm2 without any electrolytic decomposition and offers a superior capacity retention. We have also demonstrated an ‘anode free’ LFP-Cu cell which was cycled over 50 cycles and achieved an average coulombic efficiency of 98.74%. The coordination chemistry and (electro)chemical understanding as well as the excellent cycling stability collectively leads toward a breakthrough in realizing the practical applicability of this ether aided ionic liquid electrolytes in lithium metal battery applications, while delivering high energy density in a prototype cell.


Ionic liquid,
Transport properties,
High current density cycling,
Lithium metal batteries,
Anode free batteries,

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.