Ideal Current-voltage Characteristics and Rectification Performance of Molecular Rectifier under Single Level based Tunneling and Hopping Transport

01 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work, we systematically studied the rectifying properties of molecular junction based on asymmetric tunneling and hopping charge transport in a single electronic state model using Landauer formula and Marcus theory. We first analyzed the asymmetric I-V characteristics and revealed distinct physical origins of the rectification under the two types of transports. We found significant difference in I-V characteristics of the two and the hopping transport can afford a much higher rectification ratio than tunneling. Next, the effect of key physical parameters on rectification performance under tunneling and hopping, like asymmetric factor, energy barrier, temperature and molecule-electrode coupling et al, were extensively evaluated, which provided a theoretical baseline for molecular diode design and performance modulation. At last, we further analyzed representative experimental results using the two models. We successfully reproduced the experimental results by adjusting the model parameters and revealed the coexistence of the tunneling and hopping processes in the ferrocene based molecular diode. The model method thus can work as powerful tool in mechanism analysis for the molecular rectification study.

Keywords

molecular rectifier
single level model
tunneling and hopping transport
Landauer formula
Marcus theory

Supplementary materials

Title
Description
Actions
Title
Suppporting information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.