In Silico Identification of Widely Used and Well Tolerated Drugs That May Inhibit SARSCov- 2 3C-like Protease and Viral RNA-Dependent RNA Polymerase Activities, and May Have Potential to Be Directly Used in Clinical Trials

16 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We performed repurposing of FDA approved drugs against SARS-CoV-2 3 chymotrypsin like protease and RNA-dependent RNA polymerase. During the screening, 3948 drugs approved by the U.S. Food and Drug Administration (FDA) to target the active site of 3CLpro and nsp8 binding sites of RdRp and, in turn, disturb SARS-CoV-2 life cycle in host cell. As a result of molecular docking and molecular
dynamics simulations, several drugs with high binding affinity to both SARS-Cov-2 3CLpro and RdRp targets were identified. While drugs such as tetracycline and its derivatives, dihydroergotamine, ergotamine, dutasteride, nelfinavir, paliperidone, and conivaptan were identified to bind SARS-Cov-2 3CLpro; tipranavir, nelfinavir, dihydroergotamine, conivaptan, dutasterid and eltrombopag were found to bind nsp8 binding site of RdRp. Notably, further analysis of the results showed that ergotamine,
dihydroergotamine, conivaptan, paliperidone, and tipranavir can bind to both enzymes with high affinity. Since these drugs are well tolerated, cost-effective and widely used, our study suggested that tetracycline and its derivatives, dutasteride, ergotamine, bromocriptine, tipranavir, conivaptan, paliperidone, eltrombopag drugs have the potential to be used alone or in combination as adjuvant for
the treatment of SARS-CoV-2 infected patients.

Keywords

SARS-CoV-2
3 Chymotrypsin like protease
RNA dependent RNA polymerase
drug Repurposing
tetracycline
Dutasteride

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.