Sebum: A Window into Dysregulation of Mitochondrial Metabolism in Parkinson’s Disease

17 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A metabolomics profiling approach was conducted to identify diagnostic biomarkers of PD from sebum, a non-invasively available biofluid. In this study, we used liquid chromatography-mass spectrometry (LC-MS) to analyse 274 samples from participants (80 drug naïve PD, 138 medicated PD and 56 well matched control subjects) and detected metabolites that could predict PD phenotype. Partial least squares-discriminant analysis (PLS-DA) models based on this sebum metabolome had correct classification rates of 70.4% and 69.7% to distinguish between drug naïve PD and medicated PD from control, respectively. Variable importance in projection (VIP) scores indicate compounds with significance belonged to sphingolipid, triacylglycerol and fatty acid/ester lipid classes. Pathway enrichment analysis showed alterations in lipid metabolism and mitochondrial dysfunction viz. the carnitine shuttle, sphingolipid metabolism and arachidonic acid metabolism. This study unveiled novel diagnostic sebum-based biomarkers for PD, and provides insight towards our current understanding of the pathogenesis of PD.

Keywords

Parkinsons Diease
Metabolomics
Sebum
LC-MS
diagnosis noninvasively

Supplementary materials

Title
Description
Actions
Title
E.Sinclair LMS Sebum Parkinsons disease Supplementary Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.