On the Importance of Catalysis in Photocatalysis: Triggering of Photocatalysis at Well-Defined Anatase TiO2 Crystals Through Facet-Specific Deposition of Oxygen Reduction Cocatalyst

16 June 2020, Version 3
This content is a preprint and has not undergone peer review at the time of posting.


Well-defined anatase TiO2 crystals with co-exposed {101} and {001} facets represent a promising platform for fundamental studies in photocatalysis and for the development of novel photocatalytic systems exhibiting higher than usual quantum efficiencies. Herein, we present protocols enabling the photoreductive deposition of Pt nanoparticles onto anatase TiO2 micro-sized (1-3 mm) crystals prepared by hydrothermal growth in fluoride-containing solutions to be carried out either facet-selectively (on {101} facets only) or facet non-selectively (on both {101} and {001} facets). The photocatalytic behavior of resulting photocatalysts is studied using investigations of oxidative photodegradation of a test pollutant (4-chlorophenol, 4-CP), photocurrent measurements, and kinetic analysis of the open-circuit photopotential decay. We demonstrate that the deposition of Pt nanoparticles effectively triggers the photocatalytic degradation of 4-CP at anatase crystals which are otherwise completely inactive. The role of Pt in triggering the photocatalysis is demonstrated to consist chiefly in the catalytic enhancement of the reaction rate of oxygen reduction by photogenerated electrons. Only platinized {101} facets contribute to photocatalysis, whereas the {001} facets, in the literature often referred to as “highly reactive”, are even after platinization completely inactive, most likely due to (1 × 4) surface reconstruction upon the heat treatment necessary to decrease the amount of surface fluorides. Based on our results, we highlight the eminent role of efficient surface catalysis for effective charge separation, and provide specific design rules for further development of photocatalysts with high quantum efficiencies.


Platinum Nanoparticles
Oxygen Reduction
Charge Separation
Water Depollution


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.