Harnessing Chalcogen-bonding Interactions To Establish Conformational Control in Dirhodium(II) Paddlewheel Complexes

25 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Novel well-defined D2-symmetric dirhodium(II) carboxylate complexes that bear axially chiral binaphthothiophene delta-amino acid derivatives have been developed. Conformational control was achieved through chalcogen-bonding interactions between sulfur and oxygen atoms in each ligand, providing well-defined and uniform asymmetric environments around the catalytically active Rh(II) centers. These structural properties render such complexes excellent catalysts for the inside-type asymmetric intramolecular C–H insertion into alpha-aryl-alpha-diazoacetates to yield a variety of cis- alpha, beta-diaryl gamma-lactones, as well as the corresponding trans-isomers through epimerization, in high diastereo- and enantioselectivities. Short total syntheses of the naturally occurring gamma-lactones cinnamomumolide, cinncassin A7, and cinnamomulactone were also accomplished using this conformationally controlled catalyst.

Keywords

Paddlewheel complex
Chalcogen bond
Intramolecular C–H insertion
Axially chiral amino acid
gamma-Lactone

Supplementary materials

Title
Description
Actions
Title
SI-1
Description
Actions
Title
SI-2
Description
Actions
Title
SI-3
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.