Computational Identification of Drug Lead Compounds for COVID-19 from Moringa Oleifera

24 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

COVID-19 which is caused by the virus SARS-CoV-2, has now been declared a global pandemic by the World Health Organization. At present, no specific vaccines or drugs are available to treat COVID-19. Therefore, there is an urgent need for the identification of novel drug lead compounds
to treat COVID-19. The SARS-CoV-2 main protease (Mpro also known as 3CLpro) and RNA-dependent RNA polymerase (RdRp also known as nsp12) are the best-characterized drug targets among corona viruses. In order to discover the natural lead compounds for SARS-CoV-2, we
performed molecular docking with the compounds from Moringa Oleifera that target the Mpro and RdRp. The molecular docking studies were carried out using AutoDock Vina through PyRx. Drug-likeness property of the selected compounds was checked by applying the ‘Lipinski’s rule of five’ using Swiss ADME. The top four compounds with most favourable binding affinity were selected for each of the targets. The results indicated that the compounds kaempferol, pterygospermin, morphine and quercetin exhibited best binding energy towards Mpro and RdRp. This study suggests that these natural compounds could be promising candidates for further evaluation of COVID-19 prevention.

Keywords

COVID-19,
RdRp
Mpro
molecular docking
morphine
quercetin
kaempferol
pterygospermin

Supplementary materials

Title
Description
Actions
Title
fig1
Description
Actions
Title
fig2
Description
Actions
Title
fig3
Description
Actions
Title
fig4
Description
Actions
Title
fig5
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.