Deciphering the Binding Mechanism of Dexamethasone Against SARS-CoV-2 Main Protease: Computational Molecular Modelling Approach

23 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

At present, there are no proven agents for the treatment of 2019 coronavirus disease (COVID-19). The available evidence has not allowed guidelines to clearly recommend any drugs outside the context of clinical trials. One of the most important SARS-CoV-2 protein targets for therapeutics is the 3C-like protease (main protease, Mpro). Here in this study we utilize the recently published 6W63 crystal structure of Mpro complexed with a non-covalent inhibitor X77. Various docking methods FRED, HYBRID, CDOCKER and LEADFINDER tools were benchmark to optimally re-dock the co-crystal ligand within the active site of SARS-COV-2 Mpro. This study was restricted to molecular docking without validation by molecular dynamics simulations. CDOCKER was found to depict the exact binding of co-crystal ligand having lowest RMSD of less than 2 A. Interactions with the SARS-COV-2 Mpro may play a key role in fighting against viruses. Dexamethasone was found to bind with a high affinity to the same sites of the SARS-COV-2 Mpro than the Remdesivir. Dexamethasone was forming six hydrogen bonds compared to the three hydrogen bonds formed by Remdesivir within the active site of SARS-COV-2 Mpro. LEU141, GLY143, HIS163, GLU166, GLN192 were the key amino acid residue of SAR-COV-2 Mpro involved in stabilizing the complex between Dexamethasone and SARS-COV-2 Mpro. The results suggest the effectiveness of Dexamethasone as potent drugs against SARS-CoV-2 since it bind tightly to its Mpro. In addition, the results also suggest that dexamethasone as top antiviral treatments option than the Remdesivir with high potential to fight the SARS-CoV-2.

Keywords

SARS-COV-2
Dexamethasone
Main Protease, MPro
Molecular Docking,
Insilico
Binding mode

Supplementary materials

Title
Description
Actions
Title
Deciphering the binding mechanism of Dexamethasone against SARS CoV 2 Main Protease Computational molecular modelling approach Shafi
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.