Physical Chemistry

Total Correlation Spectroscopy Across All NMR-Active Nuclei by Mixing at Zero Field


Multidimensional Nuclear Magnetic Resonance (NMR) is based on the combination of well-established building blocks for polarization transfer. These blocks are used to design correlation experiments through one or a few chemical bonds or through space. Here, we introduce a building block that enables polarization transfer across all NMR-active nuclei in a coupled network of spins: isotropic mixing at Zero and Ultra-Low Field (ZULF). Exploiting mixing under ZULF-NMR conditions, heteronuclear TOtal Correlation SpectroscopY (TOCSY) experiments were developed to highlight coupled spin networks. We demonstrate 1H-13C and 1H-15N correlations in ZULF-TOCSY spectra of labelled amino acids, which allow one to obtain cross-peaks among all hetero-nuclei belonging to the same coupled network, even when the direct interaction between them is negligible. We also demonstrate the interest of ZULF-TOCSY to analyze complex mixtures on the supernatant of ISOGRO, a growth medium of isotope-labelled biomolecules. ZULF-TOCSY enables the quick identification of individual compounds in the mixture by their coupled spin networks. The ZULF-TOCSY method will lead to the development of a new toolbox of experiments to analyze complex mixtures by NMR.


Thumbnail image of zulf_tocsy.pdf
download asset zulf_tocsy.pdf 1 MB [opens in a new tab]