An In-Silico Study on Selected Organosulfur Compounds as Potential Drugs for SARS-CoV-2 Infection via Binding Multiple Drug Targets

19 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The emerging paradigm shift from ‘one molecule, one target, for one disease’ towards ‘multi-targeted small molecules’ has paved an ingenious pathway in drug discovery in recent years. This idea has been extracted for the investigation of competent drug molecules for the unprecedented COVID-19 pandemic which became the greatest global health crisis now. Perceiving the importance of organosulfur compounds against SARS-CoV-2 from the drugs under clinical trials, a class of organosulfur compounds effective against SARS-CoV were selected and studied the interaction with multiple proteins of the SARS-CoV-2. One compound displayed inhibition against five proteins (both structural and non-structural) of the virus namely, main protease, papain-like protease, spike protein, helicase and RNA dependent RNA polymerase. Consequently, this compound emanates as a potential candidate for treating the virulent disease. The pharmacokinetics, ADMET properties and target prediction studies carried out in this work further inflamed the versatility of the compound and urge to execute in-vitro and in-vivo analysis on SARS-CoV-2 in the future.

Keywords

SARS-CoV-2
Organosulfur compounds
Molecular docking analysis
Multi-targeting drugs
Main protease (Mpro)
Papain-like protease (PLpro)
Spike protein (Spro)
Helicase
RNA dependent RNA polymerase (RdRp)

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.