Abstract
Aqueous organic redox flow batteries (AORFBs) have become increasing attractive for scalable energy storage. However, it remains challenging to develop high voltage, powerful AORFBs because of the lack of catholytes with high redox potential. Herein, we report methyl viologen dibromide ([MV]Br2) as a facile self-trapping, bipolar redox electrolyte material for pH neutral redox flow battery applications. The formation of the [MV](Br3)2 complex was computationally predicted and experimentally confirmed. The low solubility [MV](Br3)2 complex in the catholyte during the battery charge process not only mitigates the crossover of charged tribromide species (Br3-) and addresses the toxicity concern of volatile bromine simultaneously. A 1.53 V bipolar MV/Br AORFB delivered outstanding battery performance at pH neutral conditions, specifically, 100% total capacity retention, 133 mW/cm2 power density, and 60% energy efficiency at 40 mA/cm2.
Supplementary materials
Title
200605-MVBr2-SI
Description
Actions
Title
200605-MVBr2-SI
Description
Actions
Title
200605-MVBr2-Main-ChemRxiv
Description
Actions