Abstract
This computational study comprises screening and prediction of interaction of selected antimalarial drug hydroxychloroquine with targeted two proteins of coronavirus. One is SARS enveloped E pantameric ion channel protein and another is SARS-CoV-2 main apoprotein protease. Both are vital for viral attachment and entry to the host cell for infection. After molecular protein docking with different confirmations, stable interacting complex of ligand and macromolecules were obtained. Interacting Lysine, Threonine and Tyrosine of E protein were found for participation of stable interaction with selected drug having docking affinity energy of -6.3kcal/mol. For apoprotein protease stable confirmation was screened out having bonding Threonine residue with same drug of energy -6.0 kcal/mol. Irreversible covalent bond formation and van der Waals interaction favours the selectivity and stability of both targeted proteins towards selected drug. Conventional as well as hydrophobic interactions are found in Ligplot and Discovery studio analysis also indicates stabilized confirmations between ligand and drug. Thus, this study delivers the putative mechanism of the drug interactions to target proteins hence comprising landmark for future investigation for antimalarial hydroxychloroquine as anti COVID 19 drug in this experimental time.