Transmembrane Potential of Physiologically Relevant Model Membranes: Effects of Membrane Asymmetry

16 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Transmembrane potential difference (𝑉௠) plays important roles in regulating various biological
processes. At the macro level, 𝑉௠ can be experimentally measured or calculated using the Nernst
or Goldman-Hodgkin-Katz equation. However, the atomic details responsible for its generation
and impact on protein and lipid dynamics still need to be further elucidated. In this work, we
performed a series of all-atom molecular dynamics simulations of symmetric model membranes of
various lipid compositions and cation contents to evaluate the relationship between membrane
asymmetry and 𝑉௠. Specifically, we studied the impact of the asymmetric distribution of POPS (1-
palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine), PIP2 (phosphatidylinositol 4,5-bisphosphate),
π‘π‘Žΰ¬Ύ, 𝐾ା and πΆπ‘Žΰ¬Άΰ¬Ύ on 𝑉௠ using atomically detailed molecular dynamics simulations of symmetric
model membranes. The results suggest that, for an asymmetric POPC-POPC/POPS bilayer in the
presence of NaCl, enrichment of the monovalent anionic lipid POPS in the inner leaflet polarizes
the membrane (βˆ†π‘‰ΰ―  < 0). Intriguingly, replacing a third of the POPS lipids by the polyvalent
anionic signaling lipid PIP2 counteracts this effect, resulting in a smaller negative membrane
potential. We also found that replacing π‘π‘Žΰ¬Ύ ions in the inner region by 𝐾ା depolarizes the
membrane (βˆ†π‘‰ΰ―  > 0), whereas replacing by πΆπ‘Žΰ¬Άΰ¬Ύ polarizes the membrane. These divergent effects
arise from variations in the strength of cation-lipid interactions and are correlated with changes in
lipid chain order and head group orientation.


Transmembrane Potential
Membrane Asymmetry
Molecular Dynamics Simulations


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.