Fast, Accurate Enthalpy Differences in Spin Crossover Crystals from DFT+U

11 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Spin crossover materials are bi-stable systems with potential applications as molecular scale electronic switches, actuators, thermometers, barometers and displays. However, calculating the enthalpy difference, DH, between the high spin (HS) and low spin (LS) states has been plagued with difficulties. For example, many common density functional theory (DFT) methods fail to even predict the correct sign of DH, which determines the low temperature state. Here, we study a collection of Fe(II) and Fe(III) materials, where DH has been measured, and which has previously been used to benchmark density functionals. The best performing hybrid functional, TPSSh, achieves a mean absolute error compared to experiment of 11 kJ/mol for this set of materials. However, hybrid functionals scale badly in the solid state; therefore, local functionals are preferable for studying crystalline materials, where the most interesting SCO phenomena occur. We show that both the Liechtenstein and Dudarev DFT+U methods are a little more accurate than TPSSh. The Dudarev method yields a mean absolute error of 8 kJ/mol for Ueff=1.6 eV. However, the MAE for both TPSSh and DFT+U are dominated by a single material - if this is excluded from the set then DFT+U achieves chemical accuracy. Thus, DFT+U is an attractive option for calculating the properties of spin crossover crystals, as its accuracy is comparable to that of meta-hybrid functionals, but at a much lower computational cost.

Keywords

Spin Crossover Phenomenon
DFT+U
enthalpies

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.