Communication: On the Stability and Necessary Electrophoretic Mobility of Bare Oil Nanodroplets in Water

11 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Hydrophobic oil droplets, particles and air bubbles can be dispersed in water as kinetically stabilized dispersions. It has been established since the 19th century that such objects harbor a negative electrostatic potential roughly twice larger than the thermal energy. The source of this charge continues to be one of the core observations in relation to hydrophobicity and its molecular explanation is still debated. What is clear though, is that the stabilizing interaction in these systems is understood in terms of electrostatic repulsion via DLVO theory. Recent work [Carpenter et al., PNAS 116 (2019) 9214] has added another element into the discussion, reporting the creation of bare near-zero charged droplets of oil in water that are stable for several days. Key to the creation of the droplets is a rigorous glassware cleaning procedure. Here, we investigate these conclusions and show that the cleaning procedure of glassware has no influence on the electrophoretic mobility of the droplets, that oil droplets with near-zero charge are unstable, and provide an alternative possible explanation for the observations involving glass surface chemistry.


Oil droplets
Charge of oil/water interface
Electrophoretic mobility
Zeta potential
Hexadecane droplets
Low charge nanoemulsions
Free OD
Sum Frequency Scattering


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.