Inorganic Chemistry

Polymeric Encapsulation of a Ruthenium Polypyridine Complex for Tumor Targeted 1- and 2-Photon Photodynamic Therapy



Photodynamic therapy is a medical technique, which is gaining increasing attention to treat various types of cancer. Among the investigated classes of photosensitizers, the use of Ru(II) polypyridine complexes is gaining momentum. However, the currently investigated compounds generally show poor cancer cell selectivity. As a consequence, high drug doses are needed, which can cause side effects. To overcome this limitation, there is a need for the development of a suitable drug delivery system to increase the amount of PS delivered to the tumor. Herein, we report on the encapsulation of a promising Ru(II) polypyridyl complex into polymeric nanoparticles with terminal biotin groups. Thanks to this design, the particles showed much higher selectivity for cancer cells in comparison to non-cancerous cells in a 2D monolayer and 3D multicellular tumor spheroid model. As a highlight, upon intravenous injection of an identical amount of the Ru(II) polypyridine complex, an improved accumulation inside an adenocarcinomic human alveolar basal epithelial tumor of a mouse by a factor of 8.7 compared to the Ru complex itself was determined. The nanoparticles were found to have a high phototoxic effect upon 1-photon (500 nm) or 2-photon (800 nm) excitation with an eradication of an adenocarcinomic human alveolar basal epithelial tumor inside a mouse. Overall, this work describes, to the best of our knowledge, the first in vivo study demonstrating the cancer cell selectivity of a very promising Ru(II)-based PDT photosensitizer encapsulated into polymeric nanoparticles with terminal biotin groups.


Thumbnail image of Article.pdf

Supplementary material

Thumbnail image of SI.pdf