Absorption and Circular Dichroism Spectra of Molecular Aggregates with the Full Cumulant Expansion.

08 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The exciton Hamiltonian of multichromophoric aggregates can be probed by spectroscopic techniques such as linear absorption and circular dichroism. In order to compare calculated Hamiltonians to experiments, a lineshape theory is needed, which takes into account the coupling of the excitons with inter- and intramolecular vibrations. This coupling is normally introduced in a perturbative way through the cumulant expansion formalism, and further approximated by assuming a Markovian exciton dynamics, for example with the modified Redfield theory.

Here we present an implementation of the full cumulant expansion (FCE) formalism [Ma and Cao, J. Chem. Phys. 2015, 142, 094106 ] to efficiently compute absorption and circular dichroism spectra of molecular aggregates beyond the Markov approximation, without restrictions on the form of the exciton-phonon coupling. By employing the LH2 system of purple bacteria as a challenging test case, we compare the FCE lineshapes with the Markovian lineshapes obtained with the modified Redfield theory, showing that the latter present a much poorer agreement with experiments. The FCE approach instead accurately describes the lineshapes, especially in the vibronic sideband of the B800 peak. We envision that the FCE approach will become a valuable tool for accurately comparing model exciton Hamiltonians with optical spectroscopy experiments.

Keywords

multichromophoric systems
absorption line shapes
Circular Dichroism
Excitons
modified Redfield theory
Redfield theory

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.