Biological and Medicinal Chemistry

Protein-Controlled Actuation of Dynamic Nucleic Acid Networks Using Synthetic DNA Translators

Abstract

Integrating dynamic DNA nanotechnology with protein-controlled actuation will expand our ability to process molecular information. We have developed a strategy to actuate strand displacement reactions using DNA-binding proteins by engineering synthetic DNA translators that convert specific protein-binding events into trigger inputs through a programmed conformational change. We have constructed synthetic DNA networks responsive to two different DNA-binding proteins, TATA-binding protein and Myc-Max, and demonstrated multi-input activation of strand displacement reactions. We finally achieved protein-controlled regulation of a synthetic RNA and of an enzyme through artificial DNA-based communication, showing the potential of our molecular system in performing further programmable tasks.

Content

Thumbnail image of Translator_Chemrxiv.pdf
download asset Translator_Chemrxiv.pdf 23 MB [opens in a new tab]