Consensus Virtual Screening of Dark Chemical Matter and Food Chemicals Uncover Potential Inhibitors of SARS-CoV-2 Main Protease

04 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The COVID-19 pandemic caused by SARS-CoV-2 has claimed more than 380,000 lives Worldwide and more than 6.5 million people are infected. Unfortunately, there is no drug or vaccine for the treatment of COVID-19. The increasing information available of key molecular targets of SARS-CoV-2 and active compounds against related coronavirus facilitates computational tools to rapidly suggest drug candidates for the treatment of COVID-19. As part of a global effort to fight the COVID-19 pandemic, herein we report a consensus virtual screening of large collections of food chemicals and compounds classified as Dark Chemical Matter. The rationale is to complement global efforts and explore regions of the chemical space currently underexplored. The consensus approach included combining similarity searching with various queries and fingerprints, molecular docking with two docking programs, and ADMETox profiling. We propose three compounds commercially available that were sent to experimental testing. We disclose the full list of virtual screening hits that can be subject to additional selection for acquisition or synthesis and experimental testing. This manuscript will be updated when the experimental testing of the selected compounds becomes available.

Keywords

COVID-19
ChemoInformatics
coronavirus
data fusion
Dark Chemical Matter
Docking Studies
drug discovery
food chemicals
foodinformatics
SARS-CoV-2
similarity searching
virtual screening

Supplementary materials

Title
Description
Actions
Title
Supplementary
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.