Detection of Estrogenic Hormones Using Plasmonic Nanostructures

04 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

By optimising the geometry of asymmetric split-H (ASH) resonators fabricated on zinc selenide, we have produced a total of four distinct plasmonic resonances that could be matched with six molecular vibration wavelengths (for O-H, C-H, C=O, C=C, CºC-H and C-C bonds) which are relevant to the detection of four estrogenic hormones: estrone (E1), 17β-estradiol (E2), estriol (E3) and synthetic estrogen; 17α-ethinyl estradiol (EE2). Specifically, sensitivities of 363 nm/RIU and 636 nm/RIU were achieved from the deposition of E2 on ASH1 (2 μm and 4 μm) and ASH2 (5 μm and 8 μm) respectively. A Fourier transform infrared (FTIR) spectrometer was used to measure the transmittance resonances of the fabricated ASH arrays. The amplitudes of the molecular vibrational resonances were also around 500 times greater when matched with the plasmonic resonances of the ASHs as compared with deposit on on bulk ZnSe substrates. Finally, when mixtures of two hormones were deposited on the nanoantennas, the molar ratio for each of the hormones could also be calculated by using the peak intensities for the different molecular vibration wavelengths. By engineering the spectral response of ASH resonators to match specific estrogenic fingerprints, the work paves the way for the development of metamaterial sensors with better specificity and enhanced functionalities.

Keywords

Plasmonic nanostructures
localized surface plasmon resonance (LSPR)
Surface-Enhanced InfraRed Absorption (SEIRA)
Estrogen
17β – estradiol
Estriol
Estrone
17α-ethinyl estradiol

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.