A Non-alternant Aromatic Belt: Methylene-bridged [6]Cycloparaphenylene Synthesized from Pillar[6]arene

04 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The synthesis, structure, and properties of methylene-bridged [6]cycloparaphenylene ([6]CPP), a non-alternant aromatic belt, are described. This belt-shaped methylene-bridged [6]CPP, in which each phenylene unit is tethered to its neighbors by methylene bridges, was constructed through six-fold intramolecular nickel-mediated aryl-aryl coupling of triflate-functionalized pillar[6]arene in 15% isolated yield. Compared with the analogous [6]CPP, the methylene bridges co-planarize neighboring paraphenylene units and enhance the degree of p-conjugation, resulting in a significant decrease in energy gap. Moreover, the incorporation of small molecules in the defined pocket of methylene-bridged [6]CPP makes it an attractive supramolecular architecture. Methylene-bridged [6]CPP is characterized by high internal strain energy reaching 110.2 kcal·mol–1, attributed to its restricted structure. This work not only exhibits an efficient strategy to construct a new family of aromatic belt, but also showcases their properties, which combine the merits of CPPs and pillararenes.

Keywords

Aromatic belts
Cycloparaphenylenes
pillarenes
Molecular nanocarbons

Supplementary materials

Title
Description
Actions
Title
SI NonAlternantBelt 20200603
Description
Actions
Title
4
Description
Actions
Title
TOC
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.