Interactions between Ultrastable Na4Ag44(SR)30 Nanoclusters and Coordinating Solvents: Uncovering the Atomic-scale Mechanism

03 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


We report the mechanism on the ultrahigh stability of Na4Ag44(SR)30 by uncovering how coordinating solvents interact with the Na4Ag44(SR)30 nanocluster at the atomic scale. Through synchrotron X-ray experiments and theoretical calculations, it was found that strongly coordinating aprotic solvents interact with surface Ag atoms, particularly between ligand bundles, which compresses the Ag core and relaxes surface metal-ligand interactions. Furthermore, water was used as a cosolvent to demonstrate that semi-aqueous conditions play an important role in protecting exposed surface regions and can further influence the local structure of the silver nanocluster itself. Notably, under semi-aqueous conditions, aprotic coordinating solvent molecules preferentially remain on the metal surface while water molecules interact with ligands, and ligand bundling persisted across the varied solvation conditions.


Thiolate-silver nanocluster
Coordinating solvents
cluster-solvent interaction
X-ray absorption spectroscopy
Quantum mechanical / molecular mechanical calculations


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.