ProtyQuant: Comparing Label-Free Shotgun Proteomics Datasets Using Accumulated Peptide Probabilities

02 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Comparing multiple label-free shotgun proteomics datasets requires various data processing and formatting steps, including peptide-spectrum matching, protein inference, and quantification. Finally, the compilation of results files into a format that allows for downstream analyses. ProtyQuant performs protein inference and quantification calculations, and combines the results of individual datasets into plain text tables. These are lightweight, human-readable, and easy to import into databases or statistical software. ProtyQuant reads validated pepXML from proteomic workflows such as the Trans-Proteomic Pipeline (TPP), which makes it compatible with many commercial and free search engines. For protein inference and quantification, a modified version of the PIPQ program (He et al. 2016) was integrated. In contrast to simple spectral-counting, PIPQ sums up peptide probabilities. For assigning peptides to proteins, three algorithms are available: Multiple Counting, Equal Division, and Linear Programming. The accumulated peptide probabilities (app) are used for both tasks, protein probability estimation, and quantification. ProtyQuant was tested using a reference dataset for label-free shotgun proteomics, obtained from different concentrations of 48 human UPS proteins spiked into yeast lysate. Compared to ProteinProphet, ProtyQuant detected up to 126 (15%) more proteins in the mixture, applying an equal false positive rate (FPR). Using the app values for label-free quantification showed suitable sensitivity and linearity. Strikingly, the app values represent a realistic measure of ‘Protein Presence,’ an integral concept of protein probability and quantity. ProtyQuant provides a graphical user interface (GUI) and scripts for console-based processing. It is available (GNU GLP v3) for Windows, Linux, and Docker from https://bitbucket.org/lababi/protyquant/.

Keywords

shotgun proteomics
label-free quantification
software
protein inference

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.