Identification of Atovaquone, Ouabain and Mebendazole as FDA Approved Drugs Tar-geting SARS-CoV-2 (Version 4)

14 May 2020, Version 4
This content is a preprint and has not undergone peer review at the time of posting.


The newly emerged coronavirus, SARS-CoV-2, and the resulting COVID-19 disease, has spread swiftly across the globe since its initial detection in December 2019. Given the heavy toll of this pandemic, therapeutic options for treatment are urgently needed. Here, we adopted a repositioning approach using in-silico molecular modeling to screen FDA-approved drugs with established safety profiles for potential inhibitory effects against SARS-CoV-2. We used structure-based drug design to screen more than 2000 FDA approved drugs against SARS-CoV-2 main protease enzyme (Mpro) substrate-binding pocket, focusing on two potential sites (central and terminal sites) to identify hits based on their binding energies, binding modes, interacting amino acids, and therapeutic indications. We additionally screened the top hits from both sites for potential covalent binding via nucleophilic thiol attack of Cys 145. High-scoring candidates were then screened for antiviral activity against infectious SARS-CoV-2 in a cell-based viral replication assay, and counterscreened for toxicity. Atovaquone, Mebendazole, and Ouabain exhibited antiviral efficacy with IC50s well within their respective therapeutic plasma concentrations (low nanomolar to low micromolar range), and limited toxic effects. Notably, all three were predicted in docking studies to covalently bind SARS-CoV-2 Mpro, underscoring the utility of this in-silico approach for identifying putative antivirals for repurposing. These results do not confirm efficacy in animal models or in humans, but rather serve as a starting point for testing the antiviral potential of select FDA-approved drugs, either individually or in combination.


FDA approved drugs
covalent docking
Viral Assays
Human Cells

Supplementary materials

COVID-19 Repurposing - May13 - Version 4


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.