Exhibitive Nano-to-Micron Scale Sedimentation Dynamics of Colloidal Formulations Through Direct Visualization

27 May 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


The study of sedimentation behavior of nanoparticle dispersions is important for revealing particle size and colloidal stability characteristics. Quantitative appraisal of real-world colloidal systems in their native state, is key for replacing prevailing empiricism in formulation science by knowledge-based design. Herein, we choose fuel cell inks as one case-example amongst many other possibilities to present a new visualization technique, called Transmittogram. This technique readily depicts the time-resolved settling behavior of solid-liquid dispersions, measured by analytical centrifugation (AC). Although AC enables the causal examination of agglomeration, settling, and creaming behavior of dispersions, along with its consequent effect on structure formation and product properties, the understanding of the main transmission readout is often non-intuitive and complex. Transmittograms are, therefore, the missing link for straightforward data interpretation. First, we illustrate the utility of transmittogram analysis using model silica nanoparticle systems and further validate it against known characteristics of the system. Then, we demonstrate the application of transmittograms to characterize fuel cell inks, showing the strength of the approach in deconvoluting and distilling information to the reader. Finally, we discuss the potential of the technique for routine analysis using analytical centrifugation.


Analytical centrifugation
Catalyst ink
Stability analysis
Fuel cell

Supplementary materials

2020-05-24 supporting information for preprint


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.