Structural Analysis of COVID-19 Main Protease and its Interaction with the Inhibitor N3

01 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Here, we analyze the structural features of a ligand binding domain (LBD) in COVID-19 main protease (MP) followed by the interactions between the inhibitor N3 and MP-LBD residues through the molecular dynamics simulations. The time based changes in physical parameters that includes root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (RG), dihedral distributions, residue velocity, radial distribution function (RDF) and H-bonding signify the degrees of folding states in MP-N3 complex formed by the superimposed b-barrels and flexible a-helices. Sharp and flat RDF peaks observed for the atom pairs dictate the flexibility of MP-LBD residues during their interactions with N3. In spite of larger solvent accessibility of N3, it interacts strongly with the LBD residues resulting in H-bonding. Among the LBD residues, GLU166 is found to have the lowest residue velocity that offers the sharp RDF peaks for three H-bonding atom pairs nearly at 2 Å radial distance, whereas GLY143 has the highest value of residue velocity giving rise to a flat RDF peak for the MP-N3 atom pair. Furthermore, electrostatic and van der Waals interaction energies between N3 and MP-LBD residues are noted to have the negative values. All these parameters explain the binding nature of N3 like inhibitors to the substrate binding sites of COVID-19 main protease. These analysis are expected to be a possible route applicable in drug designing mechanism to restrict the viral replication and transcription of COVID-19.


Novel corona virus
inhibitor N3
radial distributions
protein-ligand interactions


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.