Abstract
Asymmetric C–H amination via nitrene transfer (NT) is a powerful tool for the preparation of enantioenriched amine building blocks from abundant C–H bonds. Herein, we report a highly regio- and enantioselective synthesis of -alkynyl -amino alcohol motifs via a silver-catalyzed propargylic C–H amination. The protocol was enabled by development of a new bis(oxazoline) (BOX) ligand through a rapid structure-activity relationship (SAR) analysis. The method utilizes readily accessible carbamate ester substrates bearing -propargylic C–H bonds and furnishes versatile products in good yields and with excellent enantioselectivity (90–99% ee). A putative Ag–nitrene intermediate is proposed to undergo an enantiodetermining hydrogen-atom transfer (HAT) during the C–H amination event. Density functional theory (DFT) calculations were performed to investigate the origin of enantioselectivity in the HAT step.
Supplementary materials
Title
Final JACS asymmetric NT in template May 26 2020 resaved
Description
Actions
Title
Silver-Catalyzed Enantioselective Propargylic C–H Bond Amination Through Rational Ligand Design SI
Description
Actions
Title
RE Final version
Description
Actions
Title
home#
Description
Actions